Worksheet for 2021-08-27

Conceptual questions

Question 1. Draw the parametric curve $x=e^{t}, y=e^{2 t}$. (When not stated, you should assume that the t interval is the largest possible, in this case from $-\infty$ to ∞.)
Question 2. If $x=f(t), y=g(t)$ is some parametric curve, how does $x=f(3 t), y=g(3 t)$ compare?
Question 3. Let C be the shape described by the equation $x^{2}+y^{2}=5$. (What is this shape?) If we take C and
(1) shift it by 2 units in the positive y direction (i.e. upwards),
(2) and then stretch it by a factor of 3 in the x direction (i.e. horizontally),
what Cartesian equation describes the resulting shape?

Question 4. Come up with a parametrization $x=f(t), y=$ $g(t)$ for the starting shape C in the preceding problem, and then a parametrization for the shape obtained after applying the transformations.
Question 5. Suppose a parametrization $x=f(t), y=$ $g(t), a \leq t \leq b$ traces out a circle exactly once counterclockwise, ending where it started. One of the expressions $\int_{a}^{b} f(t) g^{\prime}(t) \mathrm{d} t$ and $\int_{a}^{b} g(t) f^{\prime}(t) \mathrm{d} t$ computes the area enclosed by the circle, and the other is its negative. Figure out which is which.

